The catalytic mechanism of Cdc25A phosphatase.
نویسندگان
چکیده
Cdc25 phosphatases are dual specificity phosphatases that dephosphorylate and activate cyclin-dependent kinases (CDKs), thereby effecting the progression from one phase of the cell cycle to the next. Despite its central role in the cell cycle, relatively little is known about the catalytic mechanism of Cdc25. In order to provide insights into the catalytic mechanism of Cdc25, we have performed a detailed mechanistic analysis of the catalytic domain of human Cdc25A. Our kinetic isotope effect results, Bronsted analysis, and pH dependence studies employing a range of aryl phosphates clearly indicate a dissociative transition state for the Cdc25A reaction that does not involve a general acid for the hydrolysis of substrates with low leaving group pK(a) values (5.45-8.05). Interestingly, our Bronsted analysis and pH dependence studies reveal that Cdc25A employs a different mechanism for the hydrolysis of substrates with high leaving group pK(a) values (8.68-9.99) that appears to require the protonation of glutamic acid 431. Mutation of glutamic acid 431 into glutamine leads to a dramatic drop in the hydrolysis rate for the high leaving group pK(a) substrates and the disappearance of the basic limb of the pH rate profile for the substrate with a leaving group pK(a) of 8.05, indicating that glutamic acid 431 is essential for the efficient hydrolysis of substrates with high leaving group pK(a). We suggest that hydrolysis of the high leaving group pK(a) substrates proceeds through an unfavored but more catalytically active form of Cdc25A, and we propose several models illustrating this. Since the activity of Cdc25A toward small molecule substrates is several orders of magnitude lower than toward the physiological substrate, cyclin-CDK, we suggest that the cyclin-CDK is able to preferentially induce this more catalytically active form of Cdc25A for efficient phosphothreonine and phosphotyrosine dephosphorylation.
منابع مشابه
Impact of Ionizing Radiation on the Expression of CDC25A Phosphatase (in vivo)
Background and Objective: The cell division cycle 25 (CDC25)is a familyof highly conserved dual-specificity phosphatases that activate cyclin-dependent kinase complexes. These complexes are the main cell cycle regulators. Mammalian cells ,exposure to DNA damaging radiations such as ionizing radiation and ultraviolet light, prevent cell cycle progression by activation of checkpoint pathways an...
متن کاملp21CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclin-dependent kinases.
Cdc25A, a phosphatase essential for G1-S transition, associates with, dephosphorylates, and activates the cell cycle kinase cyclin E-cdk2. p21CIP1 and p27 are cyclin-dependent kinase (cdk) inhibitors induced by growth-suppressive signals such as p53 and transforming growth factor beta (TGF-beta). We have identified a cyclin binding motif near the N terminus of Cdc25A that is similar to the cycl...
متن کاملCrystal Structure of the Catalytic Domain of the Human Cell Cycle Control Phosphatase, Cdc25A
Cdc25 phosphatases activate the cell division kinases throughout the cell cycle. The 2.3 A structure of the human Cdc25A catalytic domain reveals a small alpha/beta domain with a fold unlike previously described phosphatase structures but identical to rhodanese, a sulfur-transfer protein. Only the active-site loop, containing the Cys-(X)5-Arg motif, shows similarity to the tyrosine phosphatases...
متن کاملAcetylation and deacetylation of Cdc25A constitutes a novel mechanism for modulating Cdc25A functions with implications for cancer
The dual specificity phosphatase Cdc25A is a key regulator of the cell cycle that promotes cell cycle progression by dephosphorylating and activating cyclin-dependent kinases. In response to genotoxicants, Cdc25A undergoes posttranslational modifications which contribute to its proteasome-mediated degradation and consequent cell cycle checkpoint arrest. The most thoroughly studied Cdc25A modifi...
متن کاملCdc25A-inhibitory properties and antineoplastic activity of bisperoxovanadium analogues.
Bisperoxovanadium (bpV) compounds are irreversible protein tyrosine phosphatase (PTP) inhibitors with a spectrum of activity distinct from that of vanadium salts. We studied the efficacy of a panel of bpVs as antineoplastic agents in vitro and in vivo with a view to investigating phosphatases as potential antineoplastic targets. The Cdc25A dual-specificity phosphatase is an oncoprotein required...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 13 شماره
صفحات -
تاریخ انتشار 2002